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Abstract

This study aimed to identify baseline features of normal subjects that are associated with subsequent cognitive decline.
Publicly available data from the Alzheimer’s Disease Neuroimaging Initiative was used to find differences in baseline clinical
assessments (ADAScog, AVLT, FAQ) between cognitively healthy individuals who will suffer cognitive decline within 48
months and those who will remain stable for that period. Linear regression models indicated an individual’s conversion
status was significantly associated with certain baseline neuroimaging measures, including posterior cingulate glucose
metabolism. Linear Discriminant Analysis models built with baseline features derived from MRI and FDG-PET measures were
capable of successfully predicting whether an individual will convert to MCI within 48 months or remain cognitively stable.
The findings from this study support the idea that there exist informative differences between normal people who will later
develop cognitive impairments and those who will remain cognitively stable for up to four years. Further, the feasibility of
developing predictive models that can detect early states of cognitive decline in seemingly normal individuals was
demonstrated.
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Introduction

Alzheimer’s disease (AD) is a debilitating illness marked by

irreversible damage to brain tissue. According to recent estimates

reported by the Alzheimer’s Association, as many as 5.1 million

Americans suffer from AD, and if we fail to establish effective

preventative measures, this number is expected to increase

substantially in the coming years with our increasingly long-lived

society. It is therefore of paramount importance that researchers

focus efforts on better understanding the disease process in its

earliest manifestation, allowing development of neuroprotective

therapies that will prevent AD-related harm.

AD presents with a variety of cognitive deficits that increase in

severity with disease progression including loss of memory,

judgment, reasoning, and verbal fluency. While these overt

symptoms can be readily assessed, the gold standard for definitive

AD diagnosis remains detection of hallmark disease pathology,

including plaques comprised of amyloid-beta protein (Ab) and

tangles comprised of tau protein. Alzheimer’s disease pathology

exists in subjects with completely normal cognition [1–4], and it

has been estimated that it may take at least 15 years from the time

of detectable amyloid pathology until development of dementia

[5]. An early stage of diminished intellectual function, called Mild

Cognitive Impairment (MCI) [6–7], may be considered to be a

prodromal stage of AD [8] especially if it can be demonstrated

using biomarkers that Alzheimer’s pathology is present. Previous

studies have examined MCI subject populations to determine

which measures are sensitive enough to make distinctions among

this population. A variety of measures have proven capable of

distinguishing MCI from cognitively normal individuals, including

clinical evaluation [9,10], neuroimaging [9,11–19], and biochem-

ical [16,19] measures. Further, clinical [9,20], neuroimaging [21–

25], biochemical [22] and electrophysiological [26] measures have

also shown the ability to determine which MCI individuals will

later suffer further decline.

While results from the MCI literature are promising, evidence

suggests that disease-related neurobiological changes have already

taken place prior to the onset of overt symptoms [27–29]. A

number of studies have been aimed at identifying measures in

cognitively normal subjects that are associated with future decline.

Longitudinal measures of hippocampal [30–31] and temporal lobe

[31] metabolic reductions, as well as hippocampal [32], temporal

lobe [33], and overall [34] volume loss, were found to be greater

for normal individuals who experienced cognitive decline relative

to those who remain stable. Baseline measures within entorhinal

cortex (ERC) seem to have similarly compelling associations with

cognitive decline. Hypometabolism in the ERC was found to be

strongly associated with the conversion from normal to MCI [31];

and baseline measures of ERC volume were found to differ
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significantly in a population of non-demented individuals who

later converted to probable AD from those who did not convert

[35]. Further, baseline pathological markers have been found to be

associated with risk of future cognitive decline in cognitively

normal individuals. Longitudinal examination of Ab deposition

revealed that normal healthy subjects with high Ab at baseline are

much more likely to develop MCI within 3 years relative to those

with normal Ab levels [36]. Also, baseline Ab/tau level ratios have

been shown to be predictive of whether a normal individual with a

Clinical Dementia Rating (CDR) of 0 will decline to CDR.0 [37].

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

provides an opportunity to further examine the issue of which

changes in cognitively normal subjects predict future cognitive

decline. ADNI data are collected longitudinally from over 200

normal individuals without significant cognitive complaints. Data

from ADNI participants include clinical assessments of family

history, cognition and behavior, MRI and PET scans, genetic

information, and circulating protein levels found in the Cerebral

Spinal Fluid (CSF).

The overall goal of this work is to distinguish which cognitively

healthy individuals will remain cognitively stable and which will

convert to MCI. We use ADNI data from normal healthy control

subjects to examine whether baseline clinical, neuroimaging, or

biochemical measures are associated with future conversion to

MCI. Specifically, we aim to determine which clinical measures

differ between decliners and non-decliners, which measures are

associated with future decline, and which measures can be used to

correctly classify individuals as those who will remain stable or

those who will convert to MCI. Certain measures are examined a-

priori, such as the individual volumes of hippocampus and ERC,

cerebral glucose metabolism in the temporal lobe, and perfor-

mance on logical memory tests. After testing a-priori hypotheses, a

variety of additional measures are examined to determine if they

could potentially identify normal subjects who will decline.

Methods

ADNI data are publicly available through the Laboratory of

Neuroimaging at UCLA (http://www.loni.ucla.edu/). Data are

collected at each of over 50 ADNI sites and stored in specified

ADNI data cores (see http://www.adni-info.org/Scientists/

ADNIStudyProcedures.aspx) with written consent from study

participants or their legally authorized representative in accor-

dance with local IRB approvals. Use of these data was consistent

with the policies set forth by the UCSF Committee on Human

Research.

1. Study Subjects
For this analysis, we included subsets of data from all individuals

that were diagnosed as normal healthy control subjects at the

baseline visit, have available MRI data at baseline, and either

converted to MCI at a later visit or have available data at 48

months. This subject population includes 57 individuals, 41 of

which remained cognitively stable (non-converters, NC), with a

CDR = 0 at all follow-up visits. The remaining 16 subjects were

diagnosed with MCI (converters, CNV) at a later testing visit: 1 at

6 months post-baseline, 2 at 12 months, 5 at 24 months, 7 at 36

months, and 1 at 48 months. Some CNV subjects did not return

for 48 month follow-up visits, however all NC did; therefore all

CNV subjects converted within 48 months and all NC subjects

remained stable for 48 months. Conversion to MCI, as outlined in

the ADNI protocol, is detemined by the site physician upon

clinical examination according to published criteria for MCI [7].

CNV subjects were all determined to be non-demented

(CDR#0.5, MMSE$24), non-depressed (Geriatric Depression

Scale, GDS,6).

Baseline imbalances between CNV and NC on demographic

and clinical variables were assessed using the Wilcoxon Rank Sum

test (a= 0.1 level). At baseline, subjects ranged in age from 63 to

90 years old with an equivalent distribution of gender among NC

and CNV and no differences in education level (See Table 1).

2. MRI Acquisition and Processing
Each of these subjects underwent the standardized 1.5 T MRI

protocol of ADNI (see www.loni.ucla.edu/ADNI/Research/

Cores/index.shtml), which included T1-weighted MRI based on

a sagittal volumetric MP-RAGE sequence (TE = 4 ms, TR = 9 ms,

flip angle = 8u, FOV = 25662566166 mm). Image quality and

preprocessing to correct for gradient nonlinearity and intensity

non-uniformity was performed at a designated MRI Center, as

described previously [38].

Images were further processed using Freesurfer software

(http://surfer.nmr.mgh.harvard.edu/) to produce segmented

maps with anatomical labels of 52 brain regions, yielding the

volume (in mm3) of each region along with cortical thickness (in

mm2) of 33 regions. The segmented maps were visually rated for

accuracy by experienced quality control staff and excluded from

the analysis if quality criteria were not met. A full description of

the FreeSurfer processing steps can be found elsewhere [39,40].

Finally, a subset of 5 of these regional MRI-derived volume and

thickness measures were selected for primary analysis based on a-

priori knowledge available in the MCI literature and included the

following regions: hippocampus, entorhinal cortex, parahippo-

campal cortex, precuneus, and posterior cingulate cortex.

3. FDG-PET Acquisition and Processing
Twenty-seven of these subjects (11 CNV, 16 NC) also

underwent FDG-PET imaging at baseline, and have available

numerical summary data derived from the PET images. PET data

were acquired on multiple instruments of varying resolution and

each participating site acquired and reconstructed the FDG-PET

data with the use of measured-attenuation correction and the

specified reconstruction algorithm for each scanner type according

to a standardized protocol (www.loni.ucla.edu/ADNI/Data/

ADNI_ Data.shtml). Images were processed by the ADNI PET

Core at UC Berkeley using an ROI approach [41], resulting in an

average measure of glucose metabolism for 5 brain regions located

in right and left angular gyri, right and left temporal gyri, and

bilateral posterior cingulate gyrus.

Table 1. Subject population demographics.

NC (n = 41) CNV (n = 16) p-value

Age (years, mean6SD) 75.9364.59 76.5865.27 0.32

Gender (%M) 48.8 56.2 0.77

Education (years, mean6SD) 16.4962.71 16.0662.91 0.55

Family history of AD (%Yes) 44.8 57.1 0.53

APOE4 carrier
(%Yes, # Homozygote)

26.8, 0 43.8, 1 0.34

Demographic information describing the population of individuals who
remained stable over 4 years (NC) and those who converted to MCI within that
same period (CNV). Mann-Whitney tests were used to compare continuous
variables and Fisher’s Exact test were used to compare categorical variables.
doi:10.1371/journal.pone.0074062.t001
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4. Modeling and Analysis
To test the hypothesis that specific baseline neuroimaging

measures are associated with conversion status (whether or not an

individual will convert to MCI) we performed linear regression

modeling. For each regression model, conversion status was used

as the predictor and one of a set of different MRI-based measures

were used as the outcomes. These measures included the 5

available regional FDG-PET measures (see 2.2 above) as well as

the complement of FreeSurfer-derived volumetric data (see 2.1

above), which were corrected for total intracranial volume using a

strategy described previously [42]. All models were adjusted for

age, gender, apoE4 carrier status, and education level. P-values of

hypothesis tests for effects on the 5 regional brain volumes chosen

a-priori, and the 5 available regional FDG-PET measures, were

considered significant at an a= 0.05 level. In a secondary

exploratory analysis, all 52 regional Freesurfer-derived volumes

and 33 thicknesses were considered. Regression model fits were

assessed through an analysis of residuals, and p-values were

corrected for multiple comparisons using the False Discovery Rate

method for a-priori analyses and exploratory analyses separately.

To test the hypothesis that certain neuroimaging and cognitive

measures could be used to predict an individual’s conversion

status, we built a number of Linear Discriminant Analysis (LDA)

models aimed at classifying individuals as CNV or NC using

baseline features. LDA models built on 5 different feature sets were

evaluated: 1) including the a-priori regional brain volumes derived

from MRI (listed above); 2) including the MRI measures as well as

a-priori selected clinical measures (ApoE4 carrier status, CSF Ab
level, and scores on delayed paragraph recall); 3) including the a-

priori regional glucose metabolism measures derived from FDG-

PET (listed above); 4) including the FDG-PET measures as well as

a-priori selected clinical measures (same as in 2); 5) including the

MRI measures and the FDG-PET measures. The models were

generated using the LDA algorithm implementation available in

the R (http://www.r-project.org/) MASS package (version 7.3-3).

Data instances were assigned to the class for which the model-

determined posterior probability was greatest.

Using a leave-one-out cross-validation procedure to evaluate the

generalizable predictive capacity of these models, we generated

predictions for each individual subject based on models created

excluding data from that subject. The sensitivity, specificity, and

overall balanced accuracy of these cross-validated models were

evaluated. Those models that appeared to produce successful

predictions were further assessed in two ways. First, in order to

increase confidence that the results were not due to overfitting, we

examined the variability in accuracies of models created using

different subsets of the data. This was done by running 20 different

K-fold cross-validated models (10 with K = 4 and 10 with K = 10).

In K-fold cross-validation, data are split into K approximately

equal groups and models are trained and tested in K folds, each

fold generating predictions for data points independent of those

used in model creation. Results varied depending on how the data

were split, so we performed 10 random data splits for each of the

K-fold cross-validated models, ensuring equivalent representations

of the dataset within each fold. The mean and standard deviation

of accuracies obtained from these 20 models are reported along

with the accuracy of the leave-one-out model, which should

theoretically be the model with least bias [43]. Second, we

approximated the null distribution representing chance levels of

accuracy for a given feature set. This was accomplished by

randomly permuting the classification labels (eliminating any

systematic information available in the data) and generating

predictions from one thousand permuted leave-one-out models for

each feature set. P-values for the leave-one-out model accuracies

were calculated as the proportion of accuracies in the null

distribution $ the true model accuracy for that feature set. Finally,

we generated ROC curves and examined the area under the

curve. Using the area under the ROC curve allows the estimate of

classification accuracy to be probability-threshold free, averaging

over the entire range of sensitivities and specificities [44].

All modeling and analysis statistics were performed using R

statistical software (referenced above).

Results

The CNV and NC groups displayed no differences in their

demographics and a slight difference in the presence of

Alzheimer’s Disease in their family history (NC, 44.8%; CNV,

57.1%) which did not approach significance. There were also no

significant differences seen in CSF biomarkers of total t (NC,

65.3624.0; CNV, 70.5628.1), or p-t (NC, 22.067.9; CNV,

28.1621.6); however the CNV showed moderately lower Ab (NC,

218.3644.4; CNV, 182.7652, p = 0.078). The proportions of

APOE4 carriers were also different, with 27% of NC and 44% of

CNV carrying the e4 allele (p = 0.341).

1. Baseline Group Differences in Clinical Domain
At baseline, there were no differences between CNV and NC in

MMSE (assessed via proportion of subjects scoring 26, 27, 28, 29,

and 30), CDR-sum of boxes (assessed via proportion of subjects

scoring 0 and 0.5), delayed paragraph recall (NC, 13.263.1;

CNV,12.163.5), or GDS (NC, 0.6160.96; CNV, 0.8861.15).

There were, however, significant (or near significant) differences

observed between CNV and NC in a number of baseline clinical

assessments including the cognitive Alzheimer’s Disease Assesment

Scale – ADAS-cog (NC, 5.1862.5; CNV, 7.562.9; p = 0.009),

Functional Activities Questionnaire – FAQ (% of subjects [NC/

CNV] with a score of: 0 [97.6/75.0], 1 [2.4/0], 2 [0/6.2], 3 [0/

12.5], 6 [0/6.2]; p = 0.006), Rey Auditory Verbal Learning Test –

AVLT (NC, 46.068.5; CNV, 39.969.6; p = 0.047), and delayed

AVLT (NC, 8.363.4; CNV, 6.264.1; p = 0.059). See Figure 1 for

associated group difference plots.

2. Baseline Group Differences in Neuroimaging Measures
Conversion to MCI was found to be a significant contributor to

the variance observed in a number of baseline MRI-derived

measures including volumes of regions such as hippocampus

(p = 0.019), ERC (p = 0.040), and amygdala (p = 0.009); as well as

thicknesses of pericalcarine (p = 0.014), entorhinal (p = 0.033), and

insular (p = 0.036) cortical regions. Conversion status was also

found to be a significant contributor to the variance observed in

baseline regional FDG-PET of posterior cingulate (p = 0.007). See

Tables 2 and 3 for a complete list of neuroimaging measures for

which conversion status appears to show a significant (or near

significant) association. Table 2 displays results from the primary

analyses conducted with data from a-priori regions of interest; and

Table 3 displays results from a secondary exploratory analysis in

which data from each of the 52 available regional volumes and 33

regional cortical thicknesses were considered. Following correction

for multiple comparisons, none of the volumetric or thickness

measures reached significance and only the regional posterior

cingulate FDG-PET measure remained significant (see Tables 2 &

3 for corrected p-values).

3. Predicting Conversion to MCI
LDA models created using neuroimaging measures combined

with clinical measures did not achieve accuracy levels exceeding

chance. However, models created with neuroimaging feature sets

Early Indications of Future Cognitive Decline

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e74062



produced prediction accuracy levels that warranted further

characterization. Using leave-one-out cross-validation, the model

created using MRI-derived a-priori volumes achieved 65.3%

accuracy (60.0% sensitivity, 70.6% specificity); the model created

using FDG-PET measures achieved 65.5% accuracy (62.5%

sensitivity, 68.4% specificity); and the model created using

combined MRI & FDG-PET measures achieved 81.2% accuracy

(80.0% sensitivity, 82.4% specificity).

The K-fold cross-validation approach revealed that the MRI-

only and PET-only models varied by less than 5 percentage points

and averaged accuracy levels similar to those seen in their

corresponding leave-one-out models (mean6SD: 66.063.9% and

63.264.2% respectively). However, the MRI-PET model dis-

played much more variability and averaged an accuracy level

nearly 10 percentage points lower than its leave-one-out counter-

part (mean6SD: 73.867.3%). Further examination of model

sensitivity and specificity via ROC analysis is displayed in Figure 2.

The permutation analysis generated p-values for each model set,

demonstrating that the MRI-only and PET-only models did not

differ significantly from chance accuracy (p = 0.122 and p = 0.096

respectively). However, the MRI-PET model maintained signifi-

cantly above chance accuracy for leave-one-out (p = 0.005) as well

as each of the K-fold model sets (p,0.05).

Discussion

The major findings from this work are: 1) Significant differences

in baseline clinical assessments (ADAS-cog, FAQ, and AVLT)

exist between normal, cognitively healthy individuals who will

Figure 1. Distribution of scores on clinical assessments for
converters and non-converters at baseline visit. A) Boxplot and
mean with 95% CIs showing scores on the ADAS-cognitive test. B)
Boxplot and mean with 95% CIs showing scores on the AVLT test. C) Bar
graph showing scores on the FAQ assessment.
doi:10.1371/journal.pone.0074062.g001

Table 2. Linear regression model results (a-priori measures).

Type of measure Region p-value

MRI-derived Volume Hippocampus 0.019 (0.096)

ERC 0.040 (0.100)

PHC 0.752 (0.840)

Precuneus 0.840 (0.840)

PCC 0.220 (0.367)

MRI-derived Thickness ERC 0.033 (0.132)

PHC 0.296 (0.395)

Precuneus 0.784 (0.784)

PCC 0.173 (0.346)

FDG-PET regional mean Posterior Cingulate 0.007 (0.020)

L/R Angular 0.109 (0.152)

L/R Temporal 0.152 (0.152)

P-values describing the significant associations of a-priori measures of interest
with the conversion status variable from linear regression analyses. P-values in
parentheses are corrected for multiple comparisons across all similar a-priori
measures.
doi:10.1371/journal.pone.0074062.t002

Table 3. Linear regression model results (exploratory
analyses).

Type of measure Region p-value

Volume Amygdala 0.009 (0.470)

Thalamus 0.058 (0.633)

Cortical Thickness Pericalcarine 0.014 (0.397)

Insula 0.036 (0.397)

Transverse Temporal 0.062 (0.437)

Selected p-values describing significant measures associated with conversion
status from secondary linear regression analyses of all available measures. P-
values in parentheses are corrected for multiple comparisons across all similar
exploratory measures.
doi:10.1371/journal.pone.0074062.t003
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suffer cognitive decline within 48 months and those who will

remain stable for that period. 2) Significant associations exist

between certain baseline neuroimaging measures (hippocampal

and entorhinal volume as well as posterior cingulate metabolism)

and an individual’s future cognitive state (specifically, whether or

not the cognitively healthy individual will suffer cognitive decline

within 48 months or remain stable for that period). 3) Simple LDA

models built with baseline features derived from MRI and FDG-

PET measures are capable of successfully predicting whether an

individual will convert to MCI within 48 months or remain

cognitively stable. Taken together these findings suggest that

individuals who suffer from cognitive decline express subtle, but

informative, differences from stable individuals up to 4 years prior

to displaying overt neuropsychological symptoms of decline.

The first major finding was that clinical assessments, including

the ADAS-cog, AVLT, and FAQ, showed group differences

between CNV and NC. The ADAS-cog evaluates the domains of

memory, reasoning, language, orientation, attention and praxis.

Scored in terms of errors, the higher scores obtained by CNV at

baseline reflect poorer performance as compared to NC. ADAS-

cog has been shown to be particularly informative in classifying

normal controls from individuals with MCI or AD, and also in

predicting MCI to AD conversion [20]. The AVLT is a list-

learning task that is designed to assess multiple cognitive

parameters associated with learning and memory. Higher scores

on AVLT by NC as compared to CNV reflect greater list memory

in this group, and near significant differences in delayed AVLT

suggest that NC may also display more robust memory retention

than CNV. Chen et al. have previously found significant group

differences between stable MCI and MCI to AD converters in

both ADAS-cog and delayed AVLT [11], thus demonstrating the

sensitivity of these tests to alterations in cognition associated with

increased risk of developing dementia. Results from the present

study further extend these findings to detection of subtle

impairments associated with increased risk of cognitive decline

from normal cognitive health to states of MCI.

FAQ is based on a partner or caregiver’s assessment of an

individual’s ability to carry out complex activities of daily living.

Scoring for each functional domain indicates a disability in

performance, thus the greater proportion of CNV scoring .0 on

these domains signifies increased impairment in activities of daily

living. Impairment in activities of daily living has been shown to be

already present in individuals with MCI [10], however the present

findings indicate that these impairments may manifest even prior

to the onset of clinical decline and could be considered, along with

the ADAS-cog and AVLT, amongst the earliest clinically assessed

indicators of risk for future cognitive decline in normal popula-

tions.

Differences were observed between MCI converters and

cognitively stable individuals in their familial history of AD

occurrence as well as the proportions of APOE4 carriers, with a

higher incidence of familial AD and higher proportion of E4

carriers being seen in MCI converters. While these differences

were not statistically significant in this small sample of data, likely

due to insufficient power, they do suggest a potential connection

between known genetic risks for developing AD and the risk for

cognitively healthy individuals to develop cognitive impairments.

Our second major finding was that neuroimaging measures

were significantly associated with an individual’s conversion status

(i.e. whether or not they would convert to MCI within 4 years),

Figure 2. ROC curve displaying performance of predictive models built using subsets of data including clinical measures, MRI-
derived features, PET-derived features, and MRI-PET combined feature sets.
doi:10.1371/journal.pone.0074062.g002

Early Indications of Future Cognitive Decline

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e74062



These include both MRI-derived structural measures as well as

FDG-PET-derived metabolic measures. In contrast to the genetic

factors, which convey only static information about risk, the

neuroimaging measures appear more sensitive to the risk of near-

term cognitive decline (within 48 months). This is perhaps due to

the fact that neuroimaging measures are dynamic, and can

therefore reflect processes underway as an individual nears the

point of cognitive decline.

Conversion from a normal control to MCI was most notably

associated with functional measures of average glucose metabolism

(MRglc) within the posterior cingulate region in the present study.

This aligns well with previous findings of hypometabolism within

this region associated with early stages of MCI [12,17,45–48].

Hypometabolism in the hippocampal and entorhinal cortices have

also been found to be associated with cognitive decline.

Researchers have found that longitudinal measures of hippocam-

pal [30,31] and temporal neocortical [31] MRglc reductions were

greater for normal individuals who experienced cognitive decline

relative to those who remain stable and concluded that, in the

normal stages of cognition, these longitudinal measures of the rate

of hypometabolism are sensitive markers of future cognitive

decline. Further, baseline measures of hypometabolism in the

ERC were found to be strongly associated with the conversion

from normal to MCI [31]. We did not have specific measures of

hippocampal or entorhinal hypometabolism in the current study,

as we were working with numerical summary data averaged over

much broader brain regions. It is possible that future efforts to

create more spatially refined summary measures of cortical

hypometabolism, including smaller regions such as hippocampus,

could produce findings equivalent to those presented here relating

to the posterior cingulate. However, it can be challenging to obtain

consistent and reproducible measures of these smaller regions due

to the variability of brain structure as well as protocols for

delineation of regional borders.

Conversion status was also associated with structural measures

of brain volume in a-priori selected regions of hippocampus and

ERC, as well as ERC thickness. This is also in line with several

previous reports demonstrating atrophy in these temporal regions

early in the disease process [49–52]. Longitudinal, but not

baseline, measures of volume loss in the hippocampus [32] and

medial temporal lobe [33] were found to be greater in normal

patients who converted to MCI than in those who remained

cognitively stable. However, baseline measures of ERC were found

to differ significantly in a population of non-demented individuals

who reported memory complaints and would later convert to

probable AD from those who did not convert [35]. Further, a 2009

study of structural MRI biomarkers of early AD found that

hippocampal volume and ERC thickness show a pattern of

progressive atrophy from normal control individuals to those with

single-domain MCI, to those with multi-domain MCI, to those

with early AD [53]. Taken together, this work suggests that these

markers are sensitive to progressive risk of cognitive decline from

earlier to later phases of disease.

Our third major finding is that statistical models using feature

sets of baseline neuroimaging measures are capable of successfully

predicting which cognitively normal individuals will convert to

MCI and which will remain stable. It is important to contrast the

true predictive models presented here with previous work whose

model outcomes suggest the predictive capacity of certain

measures, but do not directly test them. For example, researchers

have been able to use basic associative models to predict which

normal individuals will convert to MCI using MRglc reductions in

ERC [31] or using the rate of atrophy in the medial temporal lobe

[33]; and also use hippocampal volume to predict which non-

demented individuals would develop dementia [54]. In these

studies, the models were assessed using the same data that was

used to create them, and therefore the ‘predictions’ are not

generalizable. True assessment of predictive models requires some

form of validation in which the data used to make predictions was

not used in the creation of the predictive model. Recent efforts

have focused on producing true predictive models that are capable

of predicting an individual’s risk for disease progression. These

models have demonstrated the ability to predict which MCI

individuals will convert to AD using cortical thickness measures

[55], maps of regional grey matter distribution [56], and

multimodal biomarkers derived from combined MRI and FDG-

PET [24] and MRI/FDG-PET combined with CSF biomarkers

[19]; while others have used neurophysiological measurements to

predict which MCI individuals will progress with further cognitive

decline [26]. In the current study, we extend this predictive

approach into the realm of pre-decline cognitively normal

individuals. Using a-priori selected features derived from neuro-

imaging measures, we were able to successfully predict which

normal individuals would convert to MCI within 4 years and

which would remain cognitively stable.

In this particular instance, neither the structural features derived

from MRI nor the functional measures of glucose metabolism

derived from FDG-PET alone were sufficient to produce a

successful predictive model beyond the accepted level of signifi-

cance; but models created using multimodal feature sets from both

MRI and FDG-PET were capable of predicting conversion to

MCI with up to 81% accuracy, significantly exceeding chance

accuracy levels. However, it is quite possible that MRI or PET

measures alone could produce significantly successful predictive

models, as our study is limited by a small sample size. In fact, in

most cases, the MRI-only and PET-only models predicted MCI

conversion with above-chance accuracy levels (65–70%), and this

performance approached significance but simply failed to exceed

the accepted p,0.05 cutoff. Further examination of model

sensitivity and specificity via ROC analysis also demonstrates

similar behavior of all neuroimaging-based models, with clear

superiority over models based on selected clinical measures.

While the predictive models presented in the current study were

cross-validated to examine generalizability, replication of the

results of these models in a different sample of subjects would

further demonstrate their validity and robustness. The second

phase of ADNI, currently underway, provides a new sample of

controls, each with all of the available measures used in the present

study, as well as amyloid PET scanning and structural MRI at 3T.

As discussed above, results from the current study demonstrate

that characteristics of hippocampal and entorhinal cortical

structure are sensitive enough to express subtle differences between

normal individuals who will remain cognitively stable from those

who will later develop MCI. In the context of the associated

literature, present results support the notion that these measures

could provide powerful biomarkers representing either the very

early stages of cognitive decline or the risk for developing future

cognitive impairments. Our secondary analysis also points to a

number of additional regional measures of brain structure that

appear to be associated with a healthy individual’s risk of

developing MCI. Amygdalar volume is one such measure.

Structural measures of the amygdala have previously shown

potential for differentiating groups in early phase cognitive decline

[14] as well as a strong association with the risk to develop AD

dementia [54]. In relation to the present study, it is important to

keep in mind that the tests performed in the secondary analysis

were purely exploratory and statistical significance of these effects

did not survive correction for multiple comparisons.
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It is apparent from the literature that a variety of measures,

from clinical assessments to direct observations of brain structure

and function, could potentially provide informative markers

reflecting early phase cognitive decline. In fact, many of the

measures identified in the present study have demonstrated

associations, such as significant correlations between hippocampal

volume, ADAS-cog and AVLT [11]. While some have suggested a

specific sequence of alterations in these markers relation to the

course of AD [57], longitudinal studies are needed to discern the

temporal and causal relationships of these measures. Further,

longitudinal analyses could provide even more sensitive markers of

disease states, as studies have suggested that the rates of change of

these measures may prove much more informative than their

values at baseline [30–33].

We have chosen to use the clinical diagnosis of MCI as our

standard for cognitive decline in normal individuals, but it is

important to keep in mind that individuals with MCI belong to a

heterogeneous group that may include people who progress to AD

and those who may be suffering from other conditions of cognitive

decline [58]. Therefore, while much of what is described fits very

well with previous AD-specific findings, the results presented here

may not be reflective of AD-specific degenerative processes and

may instead reflect more general processes associated with early

stages of cognitive decline. In any case, the findings from this study

support the idea that there exist subtle, but informative, differences

between normal people who will later develop cognitive impair-

ments and those who will remain cognitively stable for up to four

years. Further, we have demonstrated the feasibility of developing

predictive models that can detect early states of cognitive decline

in seemingly normal individuals. Such models would be of

particular value for the development of preventative treatments,

providing quantifiable metrics of projected decline-related alter-

ations.
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